
Whitepaper

LTS Kernel software may not be the best choice for
IoT Infrastructure and Devices

This paper explains why embedded and mobile products have traditionally used Long Term
Support (LTS) kernels, and why this may not be advisable for future connected devices. It
also offers alternative methodologies for developers to consider. While the Linux kernel is
used as the example for this paper, any software in the connected product stack has similar
considerations.

Introduction
Over time it should be obvious that in a given software project the best, most tested, most
stable release is the latest release. The counter is that if new software is being added, that
software has less testing and therefore risks introducing instability into a stable product.

New software is introduced into projects for three reasons:

● Bug fixes Designed to fix problems that have been found
● Security Updates Designed to improve security or fix known flaws
● New Features New functionality

In general the first two should improve existing product functionality. The third introduces
new functionality that may or may not be advantageous to an existing product.

Embedded Devices Today - the LTS Kernel Approach
Approximately once a year the Linux kernel community designates a particular kernel
release as LTS (Long Term Support). Typically, these kernels are maintained with
backported key bug fixes and security updates for two- to four years after release . As an 1

outlier, the Linux 4.4 release from January 2016 is planned for maintenance until February
2022 (i.e., six years). Product developers see LTS releases as a good thing because a key
complex component of the software stack is being maintained “for free” by the Linux
community, reducing lifetime maintenance costs and increasing product stability.

This may not always be true.

1 https://www.kernel.org/category/releases.html

 Page 1 of 9

What Really Happens
There is a long supply chain for software between the Linux kernel developers, System on
Chip (SoC) makers, and an embedded/IoT end product build. The chain looks something like
this:

By the time the kernel is running in an end product it has had extensive changes that have
taken many months of engineering by multiple parties:

● SoC vendors add kernel support for their own IP. This can be extensive with support
for proprietary security, GPU, AI, networking, multimedia and peripheral IP

● Linux distributions such as Ubuntu, SuSE or RedHat test and stabilize the LTS kernel
adding upstream patches if needed (sometimes they even choose a different kernel
for their own “LTS”)

● Next, component distributors or development board producers create their own
derivative kernel with additional changes for the components they use externally to
the SoC on a development board (for example USB, Bluetooth, PCIe peripherals etc.)

● Finally the end product developer may add additional changes to the kernel for their
own purposes.

This development process can take a year or more - typically product developers are
starting with kernels that are one- to two years old. Then, depending on the maintenance
carried out further up the chain, the first task is often applying the LTS updates to the
original LTS kernel. This may or may not go smoothly. If there are dependencies on any of
the changes introduced by all of the third parties, they can take months to resolve.

 Page 2 of 9

The SnowFlake Problem
By this point every embedded product kernel is different. Mainstream SoC Vendor BSP code
alone can add 50 percent or more lines of code to the kernel.

The end product developer is now responsible for
testing and maintaining a unique kernel. Assuming
everyone has complied with their GPL licensing
obligations the source code to this unique kernel is
available. However, many IP vendors (GPU, AI,
Bluetooth, WiFi etc.) provide proprietary user space
binary “blobs” for their IP, without source code. As
the upstream kernel moves forward, these vendors
often do not keep up, and so the end product
vendor ends up having to maintain this kernel over
the product lifetime with (single supplier)
dependencies on multiple third parties.

Testing and CI
Modern software testing uses Continuous Integration combined with automated testing to
improve product quality. Every code check-in to a project can be automatically tested with
regression, performance and functional testing. The result is that product quality can be
continuously improved for end use cases, as each bug fix has an added regression test.
Again, the best software is the most recent software.

However, the benefit of all this testing at the end product level in many cases only applies to
that product, because every product kernel is different.

Embedded Devices vs. Enterprise Computing
Enterprise Computing runs mission critical systems across the world - from the stock market
and banking systems, to government and city security and infrastructure systems.
Enterprise Computing requires the highest level of stability. The kernel chain for Enterprise
looks somewhat different:

 Page 3 of 9

The distribution kernel (for example, RedHat) is maintained by the distribution vendor. The
same kernel runs on a range of SoCs. New SoC support is delivered upstream (into linux.org)
by the SoC vendor. The distro vendor then pulls from kernel.org updates into the distro, and
makes the updates available to all, so that now a single kernel supports all end-products for
a given architecture (typically datacenter servers).

Now, all testing on that kernel and all bugs found benefit everyone. The distro manages the
kernel and testing, dramatically simplifying the task of the end-product developer.

This doesn’t work today on embedded devices because of the scale of the supply chain.
There are hundreds of SoCs and thousands of peripheral devices for embedded products.
SoC vendors can get products to market faster by modifying the kernel themselves. This
locks in customers, who become reliant on the level of maintenance that the SoC vendor
must then provide. Often SoC vendor kernels lag the latest Linux kernel by two or more
years. Furthermore, many SoC vendors leave kernel maintenance to the product developer,
who often does not have the tools or knowledge to determine if a particular upstream patch
might cause a conflict with SoC vendor BSP code.

Updates in a Connected World
Traditionally, embedded products were built, tested for their purpose, delivered and
maintained. Given good quality processes, bugs were rarely if ever found, let alone fixed.

The world has changed. Products today are far more complex, inter-operating systems.
Sensors are gathering vast amounts of data, and delivering them through complex
gateways and edge platforms, wired and wireless networks to cloud-based backend
systems. Corporations, governments and bad actors are probing systems for weaknesses.
Cybersecurity is becoming a key differentiator of value and product safety.

In a world of Connected Devices we need to be able to immediately update end products at
scale to fix critical security flaws or bugs. This needs to be done “over the air” (OTA) - in
most cases manual update of infrastructure devices is simply not feasible. It’s not just

 Page 4 of 9

applications that need to be updated - problems like Spectre and Meltdown require
software fixes at every level - firmware and kernel included.

OTA Updates & Latest Software
So how do we do this today? The idea of the LTS kernel is that when a security problem is
found it is immediately fixed in the current kernel tree. Then, the fix must be back-ported to
the LTS kernels. This can take the kernel community and maintainers days or even months -
the older the kernel the harder the problem, as the kernel features used to create the current
kernel fix may not even exist in older kernels.

After a period of time, the fix is made available in the LTS kernels. Next the distro will take
the fix and make sure it is compatible with its own kernel value add and make it available in
their distribution. This also can take days to months depending on the problem and the
distro release and maintenance policies. Now SoC vendors, distributors and component
vendors also must verify the patches, and test any dependencies in their own related code
bases. Many simply don’t have the resources to do this in a timely fashion, if at all, especially
on products that might be two to three or more years old. Finally the product vendor may
get fixes from some or all of the preceding chain entities and be able to apply a fix to its
product.

The fact is that most embedded products simply don’t get updated. Indeed, most products
today don’t even have the capability of being updated OTA.

We have created a fragmented software ecosystem that delays time to market,
reduces interoperability, increases the cost of lifetime maintenance, and makes
our end products more expensive and less secure in a connected world.

The best software is the latest software. Long Term Stable can really mean Long Term
Unmaintainable, especially in the Connected Device world. All product software should be
updatable from firmware to application, and all products should then benefit from the latest
software. Zero day critical security fixes to any part of the stack then can be applied
immediately and not days or months later, if at all.

A further benefit of building the infrastructure for secure OTA updates to an end product is
that the product developer then also can choose to deliver new functionality over the
product lifetime, extending utility and customer value.

 Page 5 of 9

How do we fix this?
Put simply, it should be as easy to update any Connected Device as it is to update an
iPhone​Ⓡ​. It should just happen. The product vendor should be able to determine whether an
update is urgent and critical and must be done immediately for security or safety reasons, or
whether it can wait for a normal “maintenance update” after further testing and/or
certification, or whether it simply doesn’t apply to the product use case.

First, we need to do a better job at separating application code (product vendor value add)
from the core platform. In the Android and iOS platform worlds, application developers build
millions of applications on the OS platforms, which are themselves updated many times over
the product lifetime. Because of the APIs between the platform and the applications,
developers can create and maintain applications even while the core platform software is
updated to improve stability, functionality and performance.

In the embedded world this can be hard. The architectural separation can come at a price in
terms of software footprint. However, modern technologies such as Containers can enable
updates, legacy and new software to be delivered to smart and infrastructure devices as
easily as an update to an application on a mobile phone. Once we achieve this separation
we can address the “application” updates more easily, and address the need for core
platform updates without breaking application compatibility.

Next we need to build in security and secure update capability into the core platform.

Finally, we need a common platform built on the latest software, supported by component
vendors. Then everyone can benefit from using the same software platform, that improves
over time in quality, stability, performance and features. Billions of IoT devices will see
substantial benefits by being based on the same core platform, not a different one for each
product.

From a business perspective such a platform has to be open bringing the following benefits:

- Everyone can see the code - no black boxes
- Everyone can reproduce it, improve it, contribute to it and build upon it
- Everyone can test the same core software, resulting in quality through scale
- No-one is locked into a single vendor

 Page 6 of 9

Working Upstream
The term “upstream” refers to the latest software builds in an open source project. Upstream
for the Linux kernel means working on the latest working kernel branches that are being
developed and tested for future kernel releases (also called the “tip”).

IP, SoC and hardware device vendors deliver support for new devices into the Linux kernel
by submitting their new features as patches to the Linux kernel maintainers. Once accepted,
these patches become part of the Linux kernel and are carried forward as the kernel evolves.
This reduces the maintenance cost for the vendors, while making their technology available
to product developers at the earliest possible time, accelerating design wins and time to
market.

Taking Responsibility
Who needs to do what?

IP vendors

● Ensure new IP software support is upstream, preferably in time for first silicon

SoC/MCU vendors
● Ensure new IP software support is upstream as early as possible
● Only use third-party IP that has committed upstream software support

Peripheral vendors

● Provide upstream software support for your devices

Distributors and Development Board Developers
● Provide and test your boards with upstream aligned software distributions/platforms

○ Linux and/or AOSP for 32/64bit SoCs
○ Open Source RTOS(es) such as Zephyr for 32-bit MCUs

Product Developers

● Leverage open platforms to deliver your IP, services and applications - do not
duplicate platform functionality that you then need to maintain yourself

● Leverage the platform maintenance over your product lifetime to reduce your own
cost of software maintenance as you deliver security fixes and, optionally, new
functionality

 Page 7 of 9

Beyond LTS - microPlatforms
Most of today’s Linux distributions are unsuitable for creating embedded devices. They are
targeted at developers, not end products, and include many general purpose tools, libraries
and packages for software developers, rather than end product functionality.

A software platform for use in end-products needs to be:

- Minimal
- Secure
- OTA updatable
- Cross device - e.g., multiple Arm SoCs supported
- Cross architecture - e.g., Arm, x86, RISC-V support
- Available for global use
- Provided with stable long-term APIs to product specific services and applications
- No lock in - users should be able to commercially independent of single vendors

Foundries.io
The Foundries.io microPlatforms are minimal, secure and OTA updatable open software
platforms for building products using microcontrollers (Zephyr​TM​ microPlatform​TM​) or
32/64-bit SoCs (Linux​Ⓡ​ microPlatform​TM​).

 Foundries.io microPlatforms

These platforms are based on latest stable upstream software from open source projects
including mcuBoot, Zephyr Project RTOS, Tianocore UEFI, Linaro OP-TEE, Linux Kernel,
OpenEmbedded and Yocto projects, Docker Containers and more.

 Page 8 of 9

They are continuously updated and tested end-to-end, gathering data from sensor devices
running the Zephyr microPlatform, through gateways running the Linux microPlatform with
gateways functions provided in sample Containers, to different Cloud providers.

The microPlatforms are available through low cost non-commercial or commercial per
project (not per unit) subscriptions with continuous updates, enabling product developers to
OTA update their products with platform bug fixes, security updates and new features for
the product lifetime. Partner subscription options are available for unlimited internal use, to
enable software development, product maintenance, microPlatform support and
demonstration.

microPlatform Use Cases

Find out more and download the microPlatforms at ​foundries.io

All rights reserved
© 2018 Foundries.io

 Page 9 of 9

http://foundries.io/

